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THE Analytical Theory of Dynamics, as it exists at present, is due mainly to the
labours of Lacranck, Porsson, Sir W. R. HamirTon, and JacoBr; whose researches
on this subject present a series of discoveries hardly paralleled, for their elegance
and importance, in any other branch of mathematics.

The following investigations in the same department do not pretend to make any
important step in advance; though I should not of course have presumed to lay
them before the Society, if I had not hoped they might be found to possess some
degree of novelty and interest¥.

Of previous publications with which I am acquainted, those most nearly on the same
subject are, Sir W. R. HamirToN’s two memoirs “ On a General Method in Dynamics”
in the Philosophical Transactions; Jacoers Memoir in the 17th vol. of CReLLE’s
Journal, “Ueber die Reduction der partiellen Differential-gleichungen,” &c.; and
M. BerTranD’s “ Mémoire sur l'integration des équations différentielles de la Méca-
nique,” in LiouviLLe’s Journal (1852). The relation in which the present essay stands
to the papers just named will be apparent to those who are acquainted with them,
and it would be useless to attempt to make it intelligible to others.

Ozxford, Feb. 21, 1854.

SecrioN 1.

1. Let «,, «,, .... 2, be n variables, connected by = relations with = other variables
Y1y Yo -+ Yo 3 8O that each variable of either set may be considered as a function of
the variables of the other set. Suppose then

ye=¢i(w1, Lgy oeee xn))

[* It may be useful to specify the parts to which I should principally refer as containing what is, relatively
tomy own reading on the subject, new; and in the present day it can hardly be required of any one to profess
more than this kind of originality. These are—the theorem (3.), art. 1. The results of arts. 2 to 4. The
formulee (19.), art. 7. The general form of the theorem (26.), art. 10. The processes and results of arts. 12
to 14. The generalization of Sir W. Hamrrron’s transformation of the dynamical equations, arts. 17, 18.
The demonstration of Porsson’s theorem, arts. 21, 22. The contents of art. 25. The method of obtaining
elliptic elements, arts. 27 to 30. The contents of arts. 34 to 36. The solution of the problem of rotation,

Section I1I.]
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this equation would become identical if z,, x,, ... x,, in its second member, were
expressed in terms of y,, v,, ... ¥,; hence, differentiating each side, on this hypothesis,
first: with respect to y;, and then with respect to y;, we obtain

_dy; dxy | dy; da dy; dz,

d«z’ dy + dz’ dy + + d-z' '@; . . . . . . ° o ° (1.)

dy, dz, | dy; dz, dy; dmn .
+d'z‘2 dy + +d,z‘n dy . o @ ° ° . L3 '] (2.)

where j is any index dlﬂ'erent from . These theorems are given by Jacosr in his
memoir “De Determinantibus functionalibus.” They are however only particular
cases of more general theorems, which may be investigated as follows.
If we represent by

i 7, Ky .

Py Qs Ty oo
any two determinate sets of m indices each, selected out of the series 1, 2,3, ... n
then the determinant formed with the m?® differential coefficients

7

dyz dyz ] _‘ﬁ/_]_ dyf ] &C.

da:p dz, -~ dzp dz,

possesses properties remarkably analogous to those of a simple differential coefficient.
This analogy was pointed out by Jacosr, and has been further developed by M. Ber-
TRAND in his “ Mémoire sur le Déterminant d’un systéme de Fonctions” (LiouviLLE’s
Journal, 1851)

It appears to me that such functional determinants might be appropriately and
conveniently denoted by a symbol analogous to that of a common differential coeffi-
cient ; thus

s Uy Yo, (D)

A(Zpy gy Zpy +2)
and I shall adopt this notation in the present paper. For example,
d(u, v)
d(z, y)
would represent the determinant
dudo _dudo,
dz dy dy dx
[The expression (D.) is not a mere arbitrary symbol, but, like a simple differential
coefficient, is a real fraction. For if we denote by
d(z,, x, @, ...)
the determinant formed with the m* quantities
dux, dz, de,, ....
dyx,, dyr,, dyx,, ...

d,x,, d,rd,, x,, ....
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and attribute a corresponding meaning to

A(Yi> Yi» Yi> +++)s
where d,, d,, ... d, are symbols denoting n distinct and independent sets of variations,
so that

di § d B d b
dryi=d_z.'ld 1+ yd LR S ydr Lns

then it follows from well-known properties of determinants (as M. BErTRAND has
shown) that the complete functional determinant formed with the »* differential

coefficients

dyl dy, ‘Z?/e dya
d’/‘) dx; d.’/‘;l dwg cane &ec.

is equal to the quotient of the two determinants which I propose to denote by

d(yl) .y2’ .y3, G ,yn)’ d(ml) m2) x3) e xﬂ))
and moreover that the partial functional determinant formed with the m? terms

dy, dy; dy] d:’/? vy &e.

dxp dwq, 2 dxp dwq
is equal to the quotient of the two partial determinants

A Yis Yis Yis +++)5 A&y, yy Ty o),
the differentials of y,, &c. being taken on the hypothesis that all the differentials of
the x-variables are =0, except those of the set «,, 2, x,, .... Thus the expression
(D.) is a real fraction, provided its numerator and denominator be interpreted in a
manner exactly analogous to that in which the numerator and denominator of an
ordinary total or partial differential coefficient are interpreted.]

This being premised, let u,, u,, .... u, be m functions of any or all of the functions
Y15 Yy --- Yo (m being supposed not greater than n), so that u,, u,, &c. are functions
of x,, x,, &c. through y,, y,, &c.

Let any selected sets of m indices out of the series 1,2, ... n, be denoted, for greater
clearness, by o, &, ... 0,3 B, Bs ... By &e. Then the general theorem analogous to

du,-_du' d_yl—}—du2 dy,+&e.

may be expressed as follows :—
A,y Uy ooy U
du,, Uy, .y =2{M
(W Uy woos ) =2 dYpys Yoy ++s Yom)

(the summation on the second side referring only to the indices 3, and extending to
every combination of m out of the » numbers 1, 2, ... n).
In like manner, the theorem analogous to
dui _du; dy, | du; dy,
dz; dyl dz; T dy, dz;
fl_(fﬁl’ Ungy oo Uny) ==, (A vy . uam).d(y,gl, Yy o ?/ﬁm)}
Ay Ty ooe @) LAY Yoy o Yom) W iyy Byp o @y,)
MDCCCLIV. L

(3/3., Yoo o5 yﬁm)}

is
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These two theorems (expressed in a different notation) may be found in the memoirs
above cited. But the following, which we shall have occasion to employ hereafter,
has not, so far as I am aware, been explicitly stated.

Inasmuch as %: 1, %Z—; =0, it follows that the determinant represented by

Wap Yop Vo) (R
AWYers Yo +++ Yom)
is =1 if B,, By, ... B be the same combination of indices as «,, w,, ... @,, but is =0 in
every other case. (For in the first case the determinant is formed with 1, 0, 0, ...;
0,1,0,....; 0,0, 1, ...; &c., but if there be one index 8; which is not contained in
the series «,, @,, &c., then one row of terms in the determinant will consist wholly of
Zeros.)

Now considering v,, ¥,, &c. as functions of «,, x,, &c., and again considering these
latter as functions of y,, y,, &c. given by the inverse equations, we have, by the prece-
ding theorem, for the value of the determinant (E.) above written, the expression y,,=

s {d(?/a,, Yoy +oe yam).d(xyl, Zypy vee '”ym)}
T @y By vov @y,) AYps Yoy o+ Yp)
(where «,, 0y, ... @, 1, By ... Bn are two determinate sets of m out of the n indices,
and the summation with respect to the indices ¥ extends to every combination of m
out of the »). Consequently,
Vn=lorvy,=0,. . . . . . . . . . . . (8)
according as the series of indices

Bis Bes -+ B
is, or is not, the same combination as
oy Ogy wuee e
(I suppose, for convenience, that when the two combinations are the same, the arrange-
ment is the same in each; otherwise the value of y7,, may be —1.)
This is the theorem in question. If we put m=1, we obtain the equations (1.) and
(2.) given at the beginning of this article. If we put m=n, the expression v, reduces

itself to the product of the two determinants formed respectively with the complete

. . . di dxz; . . .
sets of differential coeflicients E% &ec., 3:; &c., the value of which product is =1, as is
J

well known.

As an illustration , it may be useful to exhibit the theorem in the case of m=2,
as expressed by the common notation. Namely,

_ dyp % dyp dyq d.%‘z d.z,- d-Z‘, dz’j
Vg—-z{(dw dwj_ﬁw_j %;) <% Jy—ﬂ—@; @;)}——l, or =0,. . . . (4)
according as «, 3 are, or are not, the same as p, g. Here , 8; p, g are two deter-

minate pairs of indices, and the summation refers to i, j, extending to every binary
combination.
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2. Theorem.—Retaining the suppositions made at the beginning of the last article,
let X be a given function of x,, x,, .... x,; and let us further suppose that the equations
by which y,, ,, ... ¥, are determined as functions of x,, &c., are

dX dX dX
y1=—-) y2=d_.2;;’ ..... Py yn-_——zz—.n) P (5.)
dy; _ dy; .
so that T 7

and if we transform the equations (1.), (2.), art. 1, by this condition, we obtain the
n equations

dy, dzy | dy, dz, Ay Az __

o, dyVin, dyy TV, d =

dy, dz, | dy, dz, dyy dzy _

Tz, @y, Vs, dyﬁ“ i, @ =

dy, dz, | dy, dz, dyn daen
dus Ay oy Ay ¥ Ve =

If these equations be added, after multiplying them respectively by
do, doy  da,
dyj dyy’ T dy

e T ot . da;
the sum of the first members reduces itself by virtue of the equations (1.), (2.), to Flgj’

whilst the second side consists of the single term Z—;f We have then
i
de; dx,
d?/] dyz

or, in other words, #f x,, X,, ... X, be found from the system of equations (5.) in terms of
V15 Yas o« Yus the resulting expressions are the partial differential coefficients of a certain
function of Y, Vay --s Yas SO that the system inverse to (5.) is of the form

4y Y _dy
dyl) .Z'z-——‘—@-; vy xn—-%.
The relation between X and Y is easily found as follows. The equations (5.) and (6.)

give

7= 6.)

dX =y, dx,+y,de,+ ... +y,dx,
dY =z, dy, ‘-z, dy,+ ... +x,dy, ;
whence, by addition, dX+Y)=d(z,y,+2y.+ ... +2,9,),
and therefore X+Y=ay,4+2y.+...+29, . - - . . . . . (7)

(omitting the arbitrary constant, which might of course be added).
The actual value of Y will then be

Y=—X)+(x)y,+ @)+ ...+ (@)Y . - . . . (8)
L2
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in which the brackets indicate that x,, @,, ... #, are to be expressed in terms of
Y15 Yas ++- Yno S0 that Y may be a function of the latter variables only. It is easy to
show & posteriori that the expression (8.) verifies the equations (6.), but I pass on to
some further considerations. (See note at the end of Section II.)

3. Suppose the function X involves explicitly, besides the variables x,, ,, &c., any
other quantity p, so that the expressions (2,), (z,), &c. (or the values of x,, @,, ... in
terms of y,, y,, &c.) will also involve p explicitly, and we shall have '

dX dX dde, dde

()
d_p+’

(

”‘")+ g

Now, differentiating the equation (8.) with respect to p (so far as it contains p

explicitly), we obtain
dy_ d(X)

w)
D= Tty
which the equation above written reduces s1mply to

dX  dY
TEG=0 o 9)

In the particular case in which X is a homogeneous function of x,, x,, ... x,, and of
m dimensions with respect to those variables, the equations (8.) and (9.) become

Y=(m—1)(X) }

)

d(X) (10.)

aX
& Tm— )‘——0

oy s . . m . . N
and it is easily seen that Y is also homogeneous and of — dimensions in y,, ¥, ...,

4. The theorems (8.) and (9.)are cases of more general ones which are easily proved
in a perfectly similar way, and which I shall therefore only enunciate. If, by means
of the equations (5.), art. 2, we express a set of n out of the 2n variables, consisting
of r #’s and n—r y’s, of which no two indices are the same, for example,

T D)
in terms of the remaining » variables,

yl) y‘b * .yr) w13 o009 Lp 3 . . . . . . . (B)
then, taking =—(X)+(w1)y1+(w2)yz+ +(w )yr

(in which the brackets indicate that the variables of the set («.) are to be expressed
in terms of those of the set {3.), so that Q is a function of the latter set), we shall have

d . ‘
ag:m,- from ¢=0 to i=»,

Z—g: —y; from j=r+1 to j=n,
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d
and %+£=O, as before*;

but the equations corresponding to (10.) will not subsist unless X be homogeneous
with respect to the r variables x,, x,, ... «,.

5. Let us now suppose that the function X contains, explicitly, besides the » vari-
ables x,, x,, ... x,, another variable ¢, and also n constants a,, a,, ... @,; and that these
last are contained in such a way that the = equations

dX dX X
E:bl,E=b2,...d7‘n=bn e e e s e e e e (11.)

would be algebraically sufficient to determine a,, a,, ... a, in terms of b,, b,, &c., x,, &c.
Then taking X,=—(X)4(a))b,+(a,)b,+.. 4+ (a,)b,

(the brackets indicating that a,, a,, &c. are to be expressed as above supposed), we
shall have, by the theorems of arts. 2 and 3,

de de de

—%:_—.al, Ez;:ag, ceee E:an; ee e e e e (12.)

and also, for all values of 7,

dX, dX
TJI.:—}ZZ'—;:_y"; . . . . . . . . . . . . (13.)

to which we may add _

dX, dX dY

"Zl—t—'_ — ~d{='dz . . . . . . . . . . . . . ( l 4.)
Now assuming the 2n equations (5.) and (11.), namely (for all values of 7),

aX_ dX_,

dz; =Y E'— iy
we may suppose each of the 2n variables x,, «,, ... ¥,, ¥,, .... to be expressed by means
of them as a function of the 2» constants «,, &c., b,, &c., and ¢; or, conversely, each
of the 2n constants to be expressed as a function of the variables «,, &c., y,, &c., and ¢.
On the former hypothesis each of the variables ,, ... y,, .... is given as an explicit,
and on the latter as -an implicit function of the single variable ¢, which we will con-
sider as independent ; and tofal differentiation with respect to t will throughout this
paper be denoted by accents, which will be used for no other purpose. Thus, p being
any function of all the variables, we shall have

_dp  dp dp .
/4 _%—I—d—x;xl+ ...+Eg‘/‘fy,—|— vee
For the rest, we may, when necessary, distinguish the meanings of the various partial

* Although these theorems, as stated in the text, are more general in form than those of the preceding
article, they may, under another point of view, be considered as particular cases of them, and may in this way
be best established.
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differential coefficients employed, by referring to the hypotheses on which they are
taken, and which I shall denote as follows :—

Hyp. 1.—The 2n variables @,, @,, ... ¥,, ¥, ... expressed as functions of a,, @, ... b,,
b,, ... and &£

Hyp. 11.—The 2n constants a,, a,, ... b,, b,, ... expressed as functions of x,, «,, ... y,,
Yy, ... and ¢.

Hyp. I1I.—The » variables y,, ¥, ... ¥, expressed as functions of the » variables
&y, Xy ... &y, the n constants a,, a,, ... a,, and ¢ (as by equations (5.)).

Hyp. IV.—The n constants &, b,, ...b, expressed as functions of the » variables
x, ... L, the n constants a,, ... a,, and ¢ (as by equations (11.)).

6. Differentiating totally the equation (11.),

dX
praall

a*X
with respect to ¢, we obtain (observing that 5—— Ty = by virtue of the conditions (5.)),

a2X dyl ,  dy, dyn ,
P e e S

(Whele » &e. are taken on Hyp. II1., art. 5)

Now let (Z) be a function of x,, ... z,, ¢, a,, ... a,, defined by the equation

dX
(Z)=-—7£,. N N
the above equation then becomes
(Z) dyl, d./a / dyn /
“da; — da; +da Tyt +da e

If this equation be multiplied by ZZL;’ and the result on each side summed with respect
J

to 7, it will be seen that the coefficients of a}, a;, &c. on the second side all vanish
except that of «j, which reduces itself to 1 (see art. 1, equations (1.) (2.)); so that

we have
(Z) dal d(Z) dag d(Z) da,, ,
da, dy; dy T da, day d + -+, da, dy;— =4

Now the expression on the left of this equation is equivalent to

if by Z (without brackets) we denote the result of substituting for a,, a,, ... a, in (Z),
their values in terms of all the variables (Hyp. IL.), so that Z is a function of the
variables only. We have then, finally (writing ¢ instead of j),

__dZ

.z’,__@z.,.....,.,..,(lﬁ.)

Again, we have (Hyp. II1.)  y= d'%-l-dyz : Zgyj L
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which, by (5.), (15.) and (16.), becomes

v AZ) _dZ dy;  dZ dy;
Yt dz; dyl dxl+dy2 dw2+
d(Z)

dZ dy,

o ) dZ d
but it is plain that + dy, dwt+dy2 y2+

(since (Z) would be derived from Z by substituting in the latter the expressions for

Y1s Yas - Hyp. 111.). And since Uy W, e, , comparing the two equations last written,

dz;  dw,
we obtain
; dZ
yi=_'d7x';. . . . . . . . - . . . . . (17-)

The system of 2z equations (16.) and (17.) express the result of eliminating the
2n constants from the equations (5.) and (11.) and their differential coefficients with
respect to £. In other words, (16.) and (17.) are a system of 2» simultaneous differ-
ential equations of the first order, of which (5.) and (11.), or again, the equations
supposed in Hyp. L. or IL, art. 5, are the 2» integrals.

7. There are other remarkable relations between the partial differential coefficients
of the expressions supposed in Hyp. I. and II., art. 5. For if we differentiate the

equation fZX._b with vespect to a; (Hyp. 1.), we obtain

d?’X  d*X de, . d*X da,

dida; T dads, day By da, =0 o o o o - (@)
which gives, putting b, for % and y; for dX’
¢ &i
dbj d?/l dxl dyg d‘Z'Q dyn dxn_
d e Ve da TV =2 - - - - - - (B)

(Whene — refers to Hyp. IV, 7 LS

&e. to Hyp. 11, and % L, &e. to Hyp. L).
If then this equation be multiplied by 3‘7-/2 (Hyp. 11.) and the result summed- with
respect to ¢, the sum of the first terms is (‘5—;’ (Hyp. I1.), and for the rest, the coeffi-
' k

cient of Z—? reduces itself to unity, whilst those of the remaining terms vanish (art. 1,
7

equ. (1.), (2.)). Thus we have
db; dzy,
d—y_i,:_%; N O £
(where the first side refers to Hyp. II., and the second to Hyp. I.).
Now if we treat the equations
daY  dY

dy w da bi
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(see equations (6.) and (9.), putting @, for p in the latter) exactly in the same way,
it is plain that the result may be deduced from (18.) by interchanging « and y, and
changing the sign of 6 ; thus

(l%’k d[l} da;’
Lastly, from the equations
aX, dXs

& =% =Y (see (12.) and (13.)),

we should find in a similar manner

o _ it
dyk—dl)j
and from the analogous equations (the existence of which is obvious)
Ny AN
dy, = % @, =T
. da; d
we should obtain &lﬁ _j%".

Collecting these results, and changing the indices, we have the system
doy_ _db;  dn_do,
d; dy; db; dy:
dy; __db; dy; . _do
da dx, db;—  dz
in each of which equations the first member refers to Hyp. 1., and the second to
Hyp. I1. (art. 5.); and it is to be remembered that there is no relation between the
indices of the variables and those of the constants, so that the case of i=j has no
peculiarity*.
8. Let 9, A be symbols denoting two distinct sets of arbitrary and independent
variations attributed to the 2»n constants ; then the equations

(19.)

dX  dX__ b
E—yia da; i
give 0X =2 (ydx,+asb,) ;

and if the operation A be performed on each side, we have
AMX =3, (Aydx;+ Aadb;)
+2,(y:Adx,+a;A0b;).

* It is remarkable that each of the equations (19.) is also true on a different and separate hypothesis, as is
apparent on inspection of the four different sets of equations,

ﬁ: . dX[, dY—z' dYb__z
don Yis d‘% —Yi d i 1 ———‘—d?/i i
dX dX,_ dY dYs

aX_g 8K, AY_ g dYs_ _ .
da; v ah " et an ¢

(see the preceding articles).
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If from this we subtract the corresponding equation obtained by inverting the order
of the operations A, 6, remembering that ASu=23Au, we obtain

2.0xAy,—Axdy,) 4 2,(0a,0b,— Dadb)=0% . . . . . . (20)
(The use here made of the double operation A9, is due in principle to Mr. BooLE.
See his demonstration of a well-known theorem of LAGrANGE, of which the equation
(20.) is a more general form+).

If in this equation we suppose dz;, dy;, &c. to be expressed in terms of da;, 0b;, &c.
(Hyp.1.), and Aa;, Ab,, &c. in terms of Az, Ay, &c. (Hyp. 11.), and compare the terms
on the two sides, it is easy to derive the relations (19.). I preferred however to
deduce them by a more direct method.

9. If 2, be expressed in terms of the 2n constants and ¢ (Hyp. 1.), and then each
constant be expressed in terms of the variables (Hyp. IL.), the result is an identical
equation. Differentiating then with respect to x;, x;, ¥, we obtain the three equations

dz; da, | do; dby | do; day | dx; db,
\=4 o, dot e, & T w, i+ &
dz; doy | dz; db, | dz; da, da, dz; db,
O—dal &, T, dx,“‘da @ T @b, %O
__dx; day | dr; db, " dn; day | dz; db,

~da, dyk+db dyk—l_da dyk+d_bed—?/k e.

Three similar equations may be obtained by treating y; in the same way. And if we
apply to these six equations the transformations given by the system (19.), art. 7,
the resulting theorems may be comprehended in the following statement.

If p, ¢ be any two of the 2 variables «,, ... z,, y,, ... ¥,, then

dp dq dp dg db; da; @ da; _ _
2<db do;~ da; db) <dp dg ~ dg @)-il’or =0, . . . . (21)

according as p and ¢ are or are not a conjugate pair, i.e. a pair of the form g, y,.
(The value +1 belongs to the case in which p=ux;, g=y,, and —1 to the converse.)

Here p and ¢ are a determinate pair of variables, and the summation refers to the
constants, extending to the n comjugate pairs.

More important however are the converse theorems obtained in a perfectly similar
way by expressing @;, or b; in terms of the variables (Hyp. II.), and supposing the
variables to be again expressed in terms of the constants and ¢ (Hyp. 1.). Differenti-
ating the resulting identical equation with respect to a;, a;, b, b;, and applying the
transformations (19.) as before, we have, putting 4, & for a determinate pair of con-
stants,

dh dk _dh dkN _ o (dys doydey dy, B .
‘d—wﬁi_%@)—EUh &k dlc) thor=0. . . . (22)

* This might be written
20 (@i, yi) + Zid(as, b)=0.
See the notation proposed in art. 1.

+ Cambridge Mathematical Journal, vol. ii. p. 100.
MDCCCLIV. M



82 PROFESSOR DONKIN ON THE

according as A, k are or are not a conjugate pair, i. e. of the form a;, b, (The value
+1 belongs to A=a,, k=b;, and —1 to the converse.)
According to the notation proposed at the beginning of this paper, the above
formula may be written
d(h, k) Ay, ;)
g 2 =3, 200, k)—+] or =0.

By a usual and convenient abbreviation, the sum

d(h, k)
‘ d(?/u ;)
may be denoted by the symbol* [4, k]. We have then, by (22.),
[a, b]=—[b, a]=1 la, b)]=|a;, a;]=[b;, b;]=0,. . . . . (23.)

J being different from ¢; and, obviously,

[a;, a;]=[b; b;]=0.
Now let £, g be any two functions whatever of the 2n constants a,, &c. b,, &c.; when
the latter are expressed in terms of the variables (Hyp. I1.), f, g become also functions

of the variables; and if %, & represent, as above, any pair whatever of a,, &c., b, &e.,
we have (see art. 1.)

Afsg) _ fdlfyg) i B
d(yi -z'i)_—z{ d(h, k)" d(ys, x,)}’

the summation referring to %, k, and extending to every binary combination.
If, now, we sum each side of this equation with respect to i, we obtain

L, gl= 2{[hk]dﬁk)} C e e e e e (240

(the summation referring as before to h, k). But, by (23.), [A, k] is 0 unless 4, k be
a conjugate pair, and then it is +=1; so that (24.) becomes simply

d(f, 9)
Lfs g]l= zlda’b) C e e e e e (25)
an equation which, written at length in the common notation, is
df dg df dgN\ _ rdf dg  df dy
dy; do;  dz; dy;) — (da, db; — db; da;

The expression on the right being a function of the constants a,, &c., b,, &c. only, the
equation (25.) expresses obviously the following theorem.

If f=¢(‘r1> Loy eoe Ly Y15 Yoy vo0 Yny t)
g="1b(xl, Xy voe Ly Y1y Yoo voe Yo t)

be any two integrals of the system of simultaneous equations (16.), (17.), art. 6, then

* Porsson empleys the notation (%, k), which would have led to confusion if adopted here. LaeraneE (in
the Méc. Anal.) uses [%, k], but with a different signification. See below, note to art. 34.
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the expression [ f, g], or

[l db_to )
Ndy; de;  d; dy;|°
is constant ; . e. it becomes a function of the arbitrary constants only, if for x;, &c.,
¥;, &c. be substituted their values in terms of the constants and ¢.

In the case in which (16.) and (17.) represent the dynamical equations, this is
identical with the remarkable theorem discovered by PoissoN. We shall have occa-
sion to return to it presently.

10. If we treat the equations (21.) of the last article exactly in the same way as
we have treated (22.), putting «, v for any two functions whatever of the 2n variables

Lyy By eee Ly Y15 Yas o0 Yns
d(u, v) — d(u, v)

we find 2ia!(bi, @)~ (@, ?/ij’

and comparing this with the theorem (25.) of the last article, we see that both may
be included in the following general enunciation :—

If u, v be either (1) any two functions whatever of the 2n constants a,, &c., b,, &c.,
or (2) any two functions whatever of the 2n variables x,, &c., y,, &c. (not centaining
t explicitly), then ‘

2.{.@ do _du do  dudv  du ﬁ’i}:__
i\ dy; du;  dw; dy; ' db; da;  da; db; 2

d(u, v) | d(u, v)
or 2‘{d(y,~,x,-)+ d(bi,ai)}=o. L @e)

(When %, v vepresent functions of the constants, the differential coeflicients in the
first term are taken on Hyp. II.; and, when functions of the variables, those in the
second term on Hyp. L. (art. 5.)).

This property depends, as will be seen, solely on the relations (5.), (11.), arts. 2, 5,
which are the only assumptions that have been made in deducing all the preceding
propositions. \

11. There are similar theorems in which the summation vefers to the numerators of
the differential coefficients; but as these are less remarkable, and moreover are
deducible immediately from the equation (20.), art. 8, I shall omit them.

12. Theorem.—]I proceed now to establish a theorem which may be considered as
the converse of that expressed by (23.), art. 9.

Let 2, &y, ... L,y Yy, Yy ... Y, be 2n variables, concerning which no supposition what-
ever is made, except that they are connected by n equations

al:%(‘”u Lgy ---hxm Yy Yy - yn)
a2=¢2(mn‘r2, ---mmyuym---yn) e e e e e e ((l)

a,, @ ... a, being n constants. The functions on the right may involve explicitly any
M2
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other quantities whatever, except «,, &c. It is assumed that these equations are
algebraically sufficient to determine each of the » variables y,, ... y,, as a function of
the other » variables x,, ... 2, and the constants. Then the theorem in question is
as follows :—

If, by means of the equations (a.), the » variables y,, ... y, be expressed as
functions of x,, &c., then in order that the conditions

By __ dy;

dz;™ de;
may subsist identically, it is necessary and sufficient that the expression [« ¢;]
(defined as in art. 9.) shall vanish for every binary combination of the n equations.
This may be proved as follows :—

Putting h, k for any two of the constants a,, a,, &c., let A=¢(x,, &c., y,, &c.) repre-
sent one of the equations (a.) above written. If in this equation the values of y,, ... ¥,
be expressed, as above supposed, in terms of x,, &c., a,, &c., it becomes identical.
Differentiating it, on this hypothesis, with respect to T, We obtain

dh d;
Gt G Bt =05
and in like manner

dk dy, | dk dy, di dy,
dxl+dy, da; +dy du; T +dy dw; ="}

and if we multiply the first of these equations by Zy]ﬁ and the second by f?lyé and sub-

tract, there results an equation which may be written as follows :—

dh dk  dh dk {dy,-(dk dk  dh d]c)}.

dy; dasi” day dyy ™ <\ doi\dyy dys ™ dy: dy,

or, putting now a,, a, instead of &, k, and employing the same notation as before,

d(a,, aq)zz.{t_lzj'd(ap, a,)
d(yiy @:) I\ s dly;, i) [

If now the terms on each side be summed with respect to ¢, the result on the first

side is [a,, a,] ; and observing that on the second side the term multiplied by w ill

only differ in sign from that multiplied by ﬁ, we shall have
d./7 dyz @ps o
[y a)=s3 ()Tl . e

the summation on the right extending to all binary combinations ¢, j. Suppose this
equation to be written at length, and then after multiplying each side by

Yy s)
d(ay, a,)

let the sum be taken with respect to all the binary combinations p, ¢. It follows



DIFFERENTIAL EQUATIONS OF DYNAMICS, ETC. 85

from the theorems of art. 1, that the coefficient of

&y, _dy,

dz,  dx,
on the right will reduce itself to unity, and that of each of the remaining terms to
zero ; so that we shall have, writing now j, ¢ for r, s,

dy; dyl {[ q]d?/,,%l e L (28)

dz; (aps a5))”

d i
In order then that the expression d% Z?/ should vanish identically for every binary

combination of indices, it follows from (28.) that it is sufficient, and from (27.) that it

n(n—1)
2

is necessary, that each of the terms [a,, @,] should vanish, and vice versd. It

will be observed that the terms [a,, @,] cannot vanish otherwise than identically,
since they do not contain any of the constants a,, a,, &c., and it is by hypothesis im-
possible to eliminate all these constants from the equations (a.). It follows then that
when the conditions [a,, a,]=0 subsist, the values of y,, ... y, expressed as above, are
identically the partial differential coefficients of a function of z,, ... z,, a,, ... @,.

We have thus established the theorem enunciated at the beginning of this article.

13. The preceding theorem may he made somewhat more general as follows :—

If we divide the 2n variables into any two sets of » each, so that no two in the
same set are conjugate (as for instance

xl) w27 ves Ly 3/1'+1) "‘.yn

,’1/1, .%, eoe .%, Lpgry ooe xn)?
& &y oor By
+m, L5 .o T,

and denote one set by
and the other by

taking the + or — sign according as #, represents y; or x;, it is obvious that the ex-

(PD q)

pression 2, ) is identical with [a,, @,]; and therefore whenever all the terms

[@,, a,] vanish, if the set 7, #, ... n, can be expressed by means of the equations (a.) of
the last article, in terms of &, &, ... &, @, @,, ... a,, their values will be the partial
differential coefficients with respect to &, £, ... §,, of a function of these variables and
of the constants.

14. Theorem.—If of the system of 2n simultaneous differential equations of the first
order ,
B e &

P ./
yl——- d,z’l, ceney yn——- dxn

(where Z denotes any function of x,, ... x,, ¥,, ... ¥, and ¢, and accents denote as usual
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total differentiation with respect to ¢) there be given » integrals, involving n arbitrary
constants a,, ... @,, as

ai=¢i(‘x1; .2?'2, one xm 3/1, yza e ,ym t)a
n(n—1)

the remaining integrals may be found, whenever the =———' conditions [a;, ¢;]=0 are

satisfied.
For let y,, ys, ... ¥ be expressed, by means of the given integrals, in terms of
Ly eoe Lpy Ayy oee Ay L.

Their values so expressed will satisfy (art. 12.) the conditions

dy;  dyi
ﬁ-—@_O(b)

Let (Z) represent the result of substituting in Z these values of vy, ..., y,, so that
(Z) is a given function of @,, ... ,, @), ... a,, . We shall have

d(_Z_) dZ dy, , dZ dy, +

+dyl i, Ty, da
which the equations (I.) and (b.) reduce to
u:gf) v, _I_d% ' dy, O ..
but 'l-i,yt'—[—dy’ i dy’ ;
consequently %:—%. R (-

Looking now at the assemblage of equations (4.), (c.), we see that they express the
following proposition :—

The values of Yis Yos oovns Yny —(2),
are the partial differential coeflicients with respect to x,, «,, ... x,, ¢, of one and the
same function. Let this function be called X ; we have then
dX dX
%—:yi: E‘[Z*(Z) M . . . . . » . . . (II.)
and since y,, ..., ¥,, (Z) are given functions of 2, &c., a,, &c., ¢, the function X can
be found by simple integration.
Let us then suppose X to be known, and let us take the total differential coefficient

. aX
with respect to ¢, of ——~; we shall have

l
To4-....

<@5> ¢X | BX . X
de; )~ dadt a’ala’xl n dadz,
which, by virtue of (I.) and (IL.), becomes

aX dZ) | dZ dy,  dZ dy,
(da,> —da; Ty, do; Ty, da T
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dZ)_dZ dy, , dZ dy,
bat day =y, doy Ty, dag T

(since (Z) is derived from Z by introducing the values of y,, ... ,, in terms of z,, &c.,
a, ... a,), hence the second member of the preceding equation vanishes, and we have

(@) =

s0 that % is constant, and we may write

%:%.. N ¢ 0§ 5

and b; is an independent arbitrary constant, as it is easy to prove; it is however
unnecessary to do so here, because we have in fact already proved it in showing that
the elimination of a,, ... a,, b,, ... b,, from the system of equations (II.), (III.), leads
to the differential equations (I.) (see art. 6.). The n equations (II1.) give therefore
the remaining » integrals of the system (I.), of which (II.) and (IIL.) together are the
complete solution.

The system of equations (IL.), (IIL.) being the same as that discussed in the pre-
ceding articles, all the conclusions there obtained will continue to subsist.

15. Suppose the expression for Z (see the last article) in terms of the variables is

Z=f(xu Ly ooe Tpy Y1y 3/2,'---,%., £),

Z is changed into (Z) by the substitution of for ¥, &e. 3 and since ddX is (identi-

cally) =-—(Z), the equatlon
fﬂ%%,"mw =0 . .. (X)

is a partial differential equation satisfied by the function X.

We have thus arrived, by an inverse route, at the point from which Sir W. Hamic-
TON’s theory, as improved by Jacosi, sets out.

Jacosi, namely, has shown (by a demonstration immediately applying only to a
particular form of the equation (X.), but easily extended), that if X be any com-
plete” solution of the equation (X.), that is, a solution involving (besides the constant
which may be merely added to X) n arbitrary constants a,, a,, ... a,, in such a way
that they cannot be all eliminated from the n+-1 equations obtained by differentiating
X with respect to x,, ... z,, £, without employing all those equations, then X possesses
the properties of Sir W. Hamivuron’s ¢ Principal Function,” or in other words, gives
all the integrals of the system (I.) by means of the system (II.), (IIL.). It will be
desirable briefly to indicate the mode in which this demonstration may be made tox
apply to the general form (X.).

Assuming that a complete solution X, of that equation, is given, put ‘%:y‘; then
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‘differentiating the equation (X.) with respect to x;, and employing the equations

dyy __dy,,
dz, dz,
‘ dyi , dof | df dy; , df dy; —
we have +dw +dy1 77 +dyg az, +..=0;

on the other hand, taking the differential coefficient of y; with respect to ¢, without
assuming anything as to the nature of the relations between # and the other variables,

we find
. dy  dy; | dy;
Y=g taw g oot -

and adding to this the preceding equation,

df dyz o dyi( ,_9f
et =in (i) i (v + -
from which it follows that the n assumptlons
49
1’5—3:;;

would involve the » further equations

' 4
Y=
Again, the » assumptions
dX
da; — =b;

would give, by combining the n equations obtained by differentiating totally with

respect to ¢, viz.
?’X 42X d?X
dazu’t-l-da,d.z'l ‘+da iy Yyt

=0,

with the » others obtained by differentiating the equation (X.) with respect to a;, viz-

a*X | df X | df d?X
daldt+dyl da,dxl_'_dyg da;dz,

aX s, df X 7,
dodar, (m‘ _'d_g/‘;> +daidw9( T dy, ) +.... =0,

from which it follows either that x;—= %, or that the determinant formed with the n?
QX '

or & (@) vanishes ; but this last condition would express, as is
dadz; : \dz,

well known, the possibility of eliminating the » constants a,, a,, ... a, from the n
equations

..==0,

the » following, namely,

expresswns

dX
%=‘Fj(a:,, &c., a,, &c., t),

which would contradict the assumption that X is a complete solution of the equa-
tion (X.).
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. . . . dX .
Finally, then, if X be a complete solution, the assumptions —-=b; involve as a

consequence the relations x;=£/[, and these again involve yé:-—t—%, where y; stands
f . cd} T T
(8] ) dxi.

In thus applying Jacosr's demonstration I have slightly altered its form, in order
to bring more prominently into view the necessity for X being a complete solution.

16. It is obvious, from the considerations given in art. 13, that instead of the
equation (X.) of the last article, we might employ any one of the analogous equations
obtained by distributing the variables as explained in the article referred to, and then

writing %EQ for #; in the expression for Z. The function Q will be a “ principal func-

tion.” In particular, if we take the equation
dY ,JdY dY
717 "“f{gy;) @—; ceey yl) y2, cere yn’ i}::O,
any complete solution will give the integrals of the differential equations (I.) by means

of the system
ayY dyY

%zxi, %:bz

The whole number of partial differential equations from each of which a “ principal
function” can be obtained, will obviously be 2. The relations between these dif-
ferent principal functions will be apparent from the conclusions of art. 4%*.

17. If @, x,, ... @, represent all the independent coordinates (of whatever kind) in
any ordinary dynamical problem, and T the expression for the vis viva- in terms of
x,, &c., ¥, &c., the equations of motion are, as is well known,

tZE)’_dT_dU

de;/  dw” du’
where U is a function of x,, ... x,, which may also contain ¢ explicitly, but not &, &c.
LacranGe, to whom these formulze are due, was also the first to employ the expressions

(T.)

daT . . . . .
.7 4s new variables, instead of ;. But Sir W. Hamivron first showed that this sub-

et . dT . " .
stitution (puttmg ﬁfzyi) would reduce the n equations (T.) to the 2n equations of

the first order of the form (I.), art. 14. His demonstration, howevery}, depends upon
the circumstance that T is, in dynamical problems, necessarily homogeneous with
respect to &, .... 4, and I am not aware that any other case has hitherto been con-
templated.

The investigations of the preceding articles will however enable us to apply a

* Compare Sir W. Hamirrton’s expressions, Philosophical Transactions, 1835, p. 99, art. 5.

+ I here adopt, what I hope will be universally adopted, the suggestion of Corronis and Professor
HrrLmuoLTz, that the definition of vis viva should be Zalf the sum of products of masses by squares of velocities,

1 Philosophical Transactions, 1835, p. 97, art. 3.

MDCCCLIV. N
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similar transformation to the equations (T.), in the case in which no limitation is im-
posed upon the form of the function T, as I shall now proceed to show.

18. Putting T+ U=W, we shall have (since U does not contain «,, &c.)
dW\' dW
—‘EZ):dm;. e e e e e e s e e (W.)

Let %:yi; then if we take
Z=— (W) @4 @gat e+ @y« o o o o (V)

(where, in the terms enclosed in brackets, «,, #;, &c. are to be expressed in terms of
1> Ysy &C.,y 2y, Xy, &e.), we shall have, by the theorems of the former articles (see equa-
tions (6.), (8.), (9.) of arts. 2 and 3, putting z; instead of x; and x, instead of p, in those
equations),

I //
i:d—y; . . ° ° ° ° ° ° ° ° . . (a.)
and dW__ dZ
’ dz; — dws
so that the equation (W.) becomes
dZ
yi:—%’ ° . . ° . . . ° ° . ° . (ﬁ.)

and («.), (8.) are of the form in question* ((I.), art. 14.). Thus, so far as the appli-
cation of any methods of integration, founded upon the preceding principles, and the
theories of Sir W. Hamirron and Jacosr, to the system (T.), art. 16, is concerned,
there is no restriction to the form of the function T. This extension is probably at
present of no practical importance, but may perhaps be thought of some interest in a
purely analytical point of view.

19. Returning now to the suppositions and conclusions of art. 14, let us further
suppose that Z does not contain ¢ explicitly, so that

dZ ., dZ ,
=S (220422 ) =
V/ ( it dyiyz> 0
by virtue of the system (I.); in this case

is one of the integrals of the system, and if we suppose this to be one of the n given
integrals from which the principal function X is to be found, so that

hy, a, a, ... a,_,
are now the » arbitrary constants, and the conditions
[a;, a;]=0, [k, a,]=0
subsist, it is plain that we shall have
(Z)=h,

* In the case in which T is homogeneous and of the second degree, in a, &y, .vv T, it is obvious that the
expression for Z reduces itself to 2(T)—W, or (T)—U.
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since the expression for Z must reduce itself identically to 2 when the values of y, ... ,
obtained from the integrals are substituted in it. Hence

dX_

a=""h
and therefore X=—ht+V,
V being a function not containing ¢ explicitly. We have then %:%y so that V is
to be fouhd from the n expressions
av_
Lastly, the » remaining integrals will be
X_, dX_,
717&— ? dai— ¢

(= representing the arbitrary constant conjugate to 4) ; and, substituting in these the
above expression for X, we obtain

dv_ dv_ 5
=t %—i_hi. e e e e e (29)
The function V now satisfies, and may be defined by, the partial differential equation
av av
f(ml, cee m,,, d—.l‘l, ceed E;n):k, . . . . . . . (V.)

where f(x,, ... €,, ¥, ... ¥) is the expression for Z in terms of the variables.

This, in dynamical problems, is the case in which the so-called “ principle of wis
viva” subsists. I shall, in the rest of this paper, use % exclusively in the above signi-
fication, and call it, whether actually referring to a dynamical problem or not, the
‘“ constant of vis vive,” whilst the integral Z=% may be called the “integral of wvis
viva.”

20. When the 2n integrals of the system of differential equations (I.), art. 14, are
expressed in the manner which has been explained, it follows from the conclusions of
former articles, that when these integrals are put in the form

= Q;(T1y ee0y Ty Yy oev Yy 1)

bi=Li(1y coey By Y1y oos Yy 1),
the conditions [a;, b;]=1, [a, b;]=0, [b, b;]=0 will subsist, as well as [a, ¢,]=0. I
shall call any system of 2z integrals in which these conditions are fulfilled, a * normal
solution,” or a system of “mnormal integrals,” whilst the 2» arbitrary constants con-
tained in such a system may be called “normal elements.” Any pair a, b, may be
called (as before) comjugate elements. In the case considered in art. 19, 4 and r are
conjugate elements, these letters being used instead of a, b, merely from obvious
motives of convenience.

It has been one principal object of these investigations to ascertain what advantages
could be gained—either for the actual integration of a system of equations of the

N 2
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form (I.), or for the transformation of known solutions into forms convenient for the
application of the method of variation of elements—by making the discovery of prin-
cipal functions depend upon that of » integrals satisfying given conditions, rather
than upon the solution of a partial differential equation. Having now prepared the
way for this inquiry, I shall proceed with it in the following section.

Secrion II.

21. Theorem.—If p, q, r be any three functions whatever of the 2n variables
Ty veey Tny Yy «or Yy then

[[p ) v ]+ (g 7] pJ+[[rs p)s gJ=0. . . . . . (30)

(The symbols have the same signification as in the last section. See art. 9.)

This may be proved as follows. It is evident that if the above expression were
developed, each term would consist of a second differential coefficient of one of the
functions p, ¢, r, multiplied by a first differential coefficient of each of the other two.

Consider then the terms in which p is twice differentiated ; these will be of the

three forms

Hp dg dr Bp dg dr g @ dg dr

dudy; Qo By oy dys dy; O dyedyy Ty )
each of which will arise from the first and third terms of (30.) only. (It is to be ob-
served that ¢ may =j.)

Now if we examine each of these forms, we see easily that for every term arising
from the_first term of (30.), there is a similar term with the opposite sign arising from
the third term of (30.); and since a similar proposition would be true of the terms in
which ¢, r, respectively, are twice differentiated, the whole expression on the left of
the equation (30.) vanishes identically. The theorem is therefore established.

It is obvious that p, ¢, r may contain, explicitly, any other quantities (as ¢) besides
the 2n variables with respect to which the differentiations are performed.

Let £ represent, either, one of the 2n variables «,, &c., y,, &c., or any other quantity
whatever, explicitly contained in p and ¢. It is evident that we shall have

Jdg[p,q]:[%%g:‘-l—[p,g% R 1 9

22. Resuming now the consideration of the 2n simultaneous differential equations
discussed in the first section, namely,

__dZ : dZ
xiz—d@—: yi——.—"-_zx—;, . . . . » . . . . . . (I.)

we shall be enabled, by means of the theorems (30.), (31.) of the last article, to give
a very simple and direct proof of the proposition indirectly demonstrated in art. 9.
For let » be any function whatever of the variables x,, &c., y,, &c., £; then

_du du ,, du .
u—'EZ"'l_Ei(%ixi_l'—%yt‘))
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and if the values of x;, y; given by (I.) be substituted in this expression, it becomes
u"=%+[z, wl]. oo oo oo (32.)
Let u={p, g], then (making use of (31.))

dj d
[ a=[2 ¢]+[p, L|+[2 [ 4]]-
Now suppose that, by virtue of the differential equations (I.), the values of p and ¢
are constant; or, in other words, that ;
p=0(x,, &e., y,, &e., ¥)
9'—'—‘4‘(%1, &.C., Y &C., t)

are any two integrals whatever of the system (I.); p, g representing two. arbitrary
constants. The equation p'=0 gives (see (32.))

d
'l'lz;"'l" [Z: p:] ::Ol

P=—[2,p),
hence D, gl=~[12 »), ¢]=[4 (2. »1]}
In like manner [p, %] =[p, Lg, Z]]

Thus the expression given above for [ p, ¢]' becomes

[, 1'=[p, 4. Z1]+[ 4> [Z, p)J+[2Z (P> 4] ),
which is identically equal to 0, by the theorem (30.). Consequently, for any two
integrals p and g,
[p,g]=constant. . . . . . . . . . . . . (33)
This theorem, as has been already mentioned, was discovered, in the case of the
dynamical equations, by Poisson; and the fact that he was able to arrive at it
through so long and complex a process as that which he has given in his first memoir
on the Variation of Arbitrary Constants*, must be looked upon as a remarkable
instance of his analytical skill. I am not acquainted with any attempt to simplify
the demonstration, except that of Sir W. HamirLron-; in fact it is probable that no
material simplification was attainable without the help of the transformation of the
differential equations to the form (I.), towards which Poisson (as Jacosr has remarked)
only made a first step. Sir W. Hamiutron’s demonstration may certainly be con-
sidered simple as compared with that of Poisson. That which I have given above
will, I hope, be regarded as a further improvewent.
23. In what follows I shall use such expressions as “the integral c,” as an abbre-
viation for ¢ the equation c=9¢(x,, &c., y,, &c., ¢).”
* Journ. de I'Ecole Polytechnique, tom. viii. 1 Philosophical Transactions, 1835, p. 108-9.
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It is of course understood that the function on the right contains neither ¢ nor any
other arbitrary constant explicitly.

Let then f, g be any two given integrals of the system (I.). It has been shown
that we shall always have

[f,g]=constant. . . . . . . . . . . . (K)
But this equation may be true either (1) identically, or (2) not identically. In the
first case the expression [ f, g] may either be identically =0, or it may reduce itself
identically to a determinate constant, which might always be made unity by multiply-
ing one of the integrals by a factor. (In the case of a “normal system” of integrals
(art. 20.), it bas been seen that every binary combination gives either 0 or 1.) But
if the above equation (K.) be not identically true, so that [ f, g] obtains a constant
value only by virtue of the differential equations, then the constant on the right of
(K.) is an arbitrary constant, and that equation is itself an integral. But here again
there are two cases; for the function [ £, g] way be only a combination of the func-
tions on the right of the two integrals f, g; and then (K.) is not a new integral, but
only a combination of the two given ones; or, on the other band, [ £, g] may be a
function independent of f, g; and then (K.) is really a new integral, which cannot
be produced by merely combining the other two, Thus it appears that PoissoN’s
theorem may in some cases lead to the discovery of new integrals, when two are known.
On this subject, and others connected with it, I refer to the interesting memoir of
M. BerTranD in LrouviLLe’s Journal (1852), “Sur Iintégration des équations différ-
entielles de la Mécanique.”

24. Let c,, c,, ... ¢, be any m integrals, and let £, g be any two functions of the m
constants ¢,, s, ..., Cy 80 that f, g are also two integrals; and considering f, g as
functions of ¢, ..., ¢,, and, through them, of the variables, we have exactly as in
art. 9, equation (24.),

[f, g]=2 {"(f’g) Lowalh - L)

the summation extending to all binary combinations of the m constants c¢,, &c. If
then we suppose k,, k, ..., k, to be m functions (such as 4, k) of the m constants
€1 -+ Cn, We shall have for any pair %, k,,

[k, k)= 2{”2("?"«)[ .]}. C e e e (38)

(the summation referring as before to.z, 7) ; and the inverse equations (obtained either
by considering c,, &c. as functions of %,, &c., and reasoning in the same way, or by

multiplying the above equation by d(( = )) and summing with respect to p, ¢) will be

[c, ¢]= 2{ If*’ ;,)) (%, kq]} C e e e ... (35)
(the summation referring to p, ¢).
This inversion can only fail in the case in which the equations expressing %,, &c. in
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terms of ¢,, &c. are not all independent; a supposition which we exclude, in order
that £, ... k,, may represent m distinct integrals.

The equations above written lead obviously to the following conclusions :—

(1.) If £ be a given function of the m constants c,, ... ¢,; then the determination
of another function g, such that [ f, g] =0, depends in general upon the solution of
a linear partial differential equation of the first order.

(2.) It is impossible that the conditions [%, % ]=0 can exist for every binary com-
bination of %, ..., k,, unless [¢, ¢;]=0 for every binary combination of c,, ..., ¢,.

25. As an illustration of the first of these conclusions, we may take a case which
actually occurs in many dynamical problems. Let c,, c,, ¢; be three integrals, such
that

[e €s]=0Cy [ c]=0Co [ C]=Cs « « « v v« (c)
and let it be required to find a function ¢ of ¢, ¢, c,, such that [c,, g]=0. The
equation (L.) of the last article gives, if we put f=c,, and introduce the conditions (c.),

c},a‘;ig—--c2 2, =0.

The solution of which is ‘ ;
g=v(a+cd), . ., .« . v .. (g9)

<y being an arbitrary function (which may evidently also contain ¢, in an arbitrary
manner).

If, instead of f=c,, we put f=¢(ci+c+ci), it will be found that the expression on
the right of the equation (L.) vanishes identically; so that in this case, if ¢ be any
arbitrary function of ¢, ¢, ¢, the condition [ £, ¢]=0 will be satisfied.

26. If a,, ay, ... a,, by, b,, ... b, be a system of normal elements (art. 20.), we have
(equation (25.), art. 9.)

LS 91=2g fg))

where f, g represent any two functions of the elements, or in other words, any two
integrals whatever. If in the above equation we put successively f=a;, f=6é, we
obtain

[a,,g]._b [b; g]=~— —— e e e o . (86

In the case where the principle of vis viva subsists, we may suppose the constant of
vis viva, h, to be one of the elements. In this case (see (29.), art. 19.) the element
conjugate to A is 7, and ¢ appears in none of the integrals explicitly, except one,
namely, the integral conjugate to A, which is

d
7=—t+—¢%°

If, then, g be any integral whatever, not containing t explicitly, it cannot contain 7,
since any combination of the normal integrals involving =, will involve it in the form
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r+¢. Consequently, for every such integral we shall have, by (36.),

g R]=0, . . . . . . . . o . . (37)
. dg_
since E—O'

This particular consequence of the formula (36.) follows also immediately from (32.),
art. 22, since the equation ¢'=0 gives, by (32.), [Z, ¢]=0, and in this case Z=#, so
that [Z, g]=[4, g]- In this manner the theorem expressed by (37.) has been already
obtained by M. BERTRAND.

Examples of the preceding Methods.

27. I shall now exemplify the principles which have been explained, by applying
them to two of the most familiar as well as important problems of dynamics. First
then let it be required to obtain in a normal form the integrals of the differential
equations which determine the motion of a material point, acted on by a force ema-
nating from a fixed centre and depending only on the distance.

Taking the centre of force as the origin of a system of rectangular coordinates, let
m be the mass, and z, y, = the coordinates of the moving point. Then

qw=%m(xls+yl2+z!2)’
and U (see art. 17.) is a given function of r, say ¢(r), where r*=a’+y*+2*. Let us put

aT dT darT
(7.2_’::“’ Zl?-:v’ 327=w’

so that, referring to the notation used in the preceding pages, we have
z, y, z instead of x,, x,, 2,
u, v, w instead of y,, ¥, ¥s.
Moreover, u=ma, v=my, w=ms'.
Hence we obtain Z=(T)—~U=m " (v*+v*+w*)—o(r),
so that the integral of vis viva, or Z=h, becomes
v ut) —g(r)=h;
and the three integrals which express the conservation of areas become
YW—W=¢,
JU—TW=C,
O—YU=C,.
These integrals are immediately seen to satisfy the conditions
[en c]=—cy, [y C]==—Co [y C1] =0,
from which it follows (see art. 25, the result of which is obviously unaffected by the
negative signs), that if we take k= (¢} +c2+ cﬁ)*‘, the condition [ ¢, £]=0 will be satisfied
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(as is easily found to be true); and since neither of the integrals ¢;, & contain ¢ ex-
plicitly, the conditions [4, ¢,]=0, [k, k]=0 will subsist also (art. 26.). Hence it
follows that if we solved algebraically the three integrals £, c,, k so as to express u,
v, w in terms of x, y, 2, their values would be the partial differential coefficients of a
function V, from which the three remaining integrals could be found (arts. 12 and 19.).

But it is more convenient to adopt a different system of coordinates. Reverting
then to the primitive form of the three integrals which we have chosen, and writing ¢
instead of c¢;, we have

T—U=k . . . . . . . . . . . . . . ()
mxy —ya)y=c. . . . . . o . . . . . . (i)
m(r* (a4 y ) —rr) =k . . . . . . . (i)

28. Let us now employ, instead of x, y, 2, the three coordinates g, 4, z; where z is
the same as before, ¢ is the projection of r on the plane of xy, and ¢ is the angle
between ¢ and the positive axis of . We shall thus have

e+ 2*=r? x=pcosd, y=pgsind,

1
and T=§m(§"" + %02 4-5%).
dT dT dT
Let =l HmTY =

(where » and v have now a new signification), then

and the threeintegrals at the end of the last article become, after obvious reductions,

2
%ﬂ(tﬁ—l—g—g-i—w?):h-}—tp(r). R ¢ B
(grv—zu)2+;—:vg=k2. R £ T

The conditions [%, ¢]=0, [k, k]=0, [c, k]=0 continue to subsist with reference to
the new variables; the two former necessarily, because (ii.) and (iii.) do not contain
¢ (art. 26.), and the third actually, as is seen on trial (not accidentally, as will be
shown hereafter).

We know, therefore, that the values of u, v, w, found from these equations, will
be the partial differential coefficients with respect to g, 4, 3 of a function V of these
latter variables.

2
The two first give u2+w2=2m(h—|—<p(r))-—§§;

and if we multiply this by ¢*+2*=7", and subtract (iii.), we obtain (introducing the
condition (ii.)
(eu+zw)*=2mr*(h+o(r))— k.

MDCCCLIV. 0
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Lastly, if this be combined with (iii.), the following expressions are found for » and w :
u=7%{2mr2(h+¢a(r))—k2} —%{lﬁ—-;—gcg}

3 2 %
wzf_g{QmW(h-l»cp(r))—-lcg} +§§{k2—;:§c}
(in which it is to be remembered that r*=2*¢%), and if to these we join the equa-
tion (ii.), the values of u, v, w are explicitly given in terms of the conjugate variables
g, 0, 2. We have then (art. 19.)
V=5}udg+vdé—|—wdz) ;

or, substituting the above values,
d, d. 2 2\ % dz —zd, 2 2 o ¥
V=ca+j' {g%iﬁ(gmr (het-p(r)) — )+ 4222 -——;—Qc) }

The term under the integral sign is easily seen to be (as we know & priort it must be)
a complete differential. It is convenient however to transform it thus. First, we
have gde+zdx=rdr ; next, let the latitude of the body (or the angle between r and

the plane of , y) be A; then tan 7\=§; and
gdz — zdp=1dM, §= sec? A.
Making these substitutions, the expression for V becomes
V=co+ @’_‘(2mr2(h+¢>(r) ) -lﬁﬁ+jdx(lﬁ— c*sec* 1),

The integration in the second term cannot be effected till the form of the function
¢(r) is given: that of the third term may be more conveniently performed after the
differentiations with respect to ¢ and %, as in the next article.

29. The remaining integrals* of the problem are (art. 19.)

%:u v =4, d/z =t
Performing the operations indicated, and observing that
1 . _,/ ksina

Vit =1 (Visg)

sec? Ad\ 1 .. _,/ ctana
ViE—dsecar ¢\ V=g )

and

* It would perhaps be better to use the term ““ integral equations” here, in order to reserve the term  inte-
” . . . . 7
gral” for the case of an equation involving only one arbitrary constant (see art. 23.). The equations av_ a, &

become ¢ integrals” in this sense, when for £, ¢, and &, on the left, are substituted the functions of the varia-
bles to which they are respectively equal (from (i.), (ii.), (ili.)). An “integral” in this limited meaning is
what is commonly called a “ first integral,” when the problem is considered as the solution of 7 differential equa-
tions of the second order. And any equation obtained by combining ““ integrals” so as to eliminate a set of

of the variables #;, o, ... @u, ¥}, Y, ... Yn, of which no two are conjugate, corresponds to what is commonly
called a “ final integral.”
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we obtain for the final integrals,

m\rdr{2mr*(h+@(r))—F}~b=t++. . . . . . . (iv)
9—sin"<4c/t]::lrfcg>=ﬁ. N (A

—k g{erz(h+¢(r))—kﬂ}_%+sin”(%):a. (i)

Let %: cos +; then m—ﬁ-:‘;;: cot s, and the equation (v.) becomes

tanA==tans«sin(¢—p), . . . . . . . . . (va)
which expresses that the orbit is in a plane whose inclination to the plane of x, ¥ is «.

Also 3 is evidently the longitude of the node, reckoned from the axis of x.
The last term on the left of (vi.) becomes

., (sinA
Sin - }.
S

Now if & be the “argument of latitude” or the angle between the node and the radius

Sslir:lk, so that the above term is simply &, and the
4

vector r, we have evidently sin 3=
integral (vi.) becomes _
S—n=k ‘."7;7{2mr2(h+¢(r))—k2}“'% L. (via

30. To apply the above expressions to the case of the undisturbed motion of a
planet, we have only to put <p(r)=’i;~", where m is now the mass of the planet, and @

the sum of the masses of the sun and planet, the origin of coordinates being placed
at the sun. It would be useless to give the well-known expressions to which' the in-
tegrations now lead, my object being merely to obtain a set of normal elements. Now
in this case we have (by well-known theorems), if a be the semiaxis major, e the
excentricity, and + as before the inclination,

h::lg-—a’—"_a k= v pa(l1—e),

and therefore c= v pa(l—e*).cos .

Also, if we take for the inferior limit of the integrations in (iv.) and (vi.a) the
minimum value of r, or the perihelion distance, it is plain that « will be the longitude
of the node, reckoned from the perihelion in the plane of the orbit, and —« the time
of perihelion passage. Thus we have the following six elements, arranged in con-
jugate pairs :—

-—gg, — (time of perihelion passage)
v ua(l—é), (angle between node and perihelion)

vuwa(l—e*).coss, (longitude of node).
02
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It is obvious that we may change the signs of the first pair. And generally, that

. . . . 1 .
if f, g be any two conjugate elements, we may substitute for them 2f, 7g, where A is

any determinate constant, i. e. not a function of the elements*.

The above elements coincide with those given by Jacosi. My object has been
merely to illustrate a mode of obtaining them which seems capable of useful applica-
tions.

31. As a second example I shall apply the method to the case of the motion of a
solid body about a fixed point.

Let the fixed point be taken for the origin, and the principal axes of the body
through that point for the axes of «, y, . Let &, 5, { refer to the same origin and to
axes fixed in space ; a, b, ¢ being the dirvection-cosines of the axis of x referred to
the fixed axes of £, 7, {, and &', ¥/, ¢'; a", b", ¢" being respectively the direction-cosines
of the axes of y and z. Let d be the inclination of the plane of z, y (or “equator”)
to that of & » (or “ecliptic”) ; + the longitude of the node, reckoned from the axis of
¢, and ¢ the right-ascension of the axis of . Then if A, B, C be the Moments of
Inertia, and p, ¢, r the angular velocities, about the axes of z, y, 2, the expression for

the vis viva is T-—-—(Ap +Bg*+Cr?), where
p=—1~0 cos p—-' sin ¢ sind
g="0sin p—+}' cos ¢ sin ¢

r=¢' 4/ cosd.
Let u, v, w be the variables conjugate respectively to ¢, ¢, ¢, so that
_drT _dT _dar
u——d—e,, 1)-——-‘76,3 W—Wv

the following expressions will be found without difficulty :
Ap=—u cos ¢+ a(v cos 0—w)
Bg=usin qb-{— (v cos d—w)

Cr=v.

Considering at present only the case in which no forces act, we have the integral of
vis viva T=h, which becomes

1 sin 2
K(—‘u cos ¢+§i€% (v cos 0—-w)>

1/ . 2
+]§(“ sin ¢>—|—c£—ig (v cos 9—-w)>

1 .
dovt=2h. . ... ()
* More generally, we may substitute for £, g any two functions of them, p, ¢, such that
dpdg_dpdg_,
dg df df dg

a condition which requires the solution of ‘a linear partial differential equation for the determination of one
function, if the other beassumed. But on the subject of the transformation of elements see below, arts, 34, 35,
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The three integrals which express the conservation of areas, namely,
Aap+Bd'q+4Ca'r=e,
Abp+Bblq+Cb'r=f,
Acp+Bdg+Cd'r=y,

become, after simple reductions,

— U COS Y — sme(v wcos d)=e

(v —wcosd)=f

w=yg.
Let e+f?+g¢*=k*; we have, adding the squares of these three equations,

—u sme—}-

sin 6

(v—w cos §)?

u2+w2+w=k2, e e e e e e e e e (il)
and we may take the three equations (i.), (ii.), and

W=0 . e e e e e e e e (1)
as three normal integrals; the conditions

[g, K]=0, [k, k]=0, [k, g]=0

being obviously satisfied.

These three equations determine u, v, w as functions of 4, ¢, 4 ; and supposing the
three former variables to be explicitly expressed in terms of the latter, we should
dV dVv dV
M
of V would therefore depend upon simple integration, and the remaining integrals
would be given by means of the three equations

av av av
h-—t+‘7 @zcn Tk = Ca

have at once the three partial differential coeflicients — the determination

7, ¢, ¢, being new arbitrary constants.

In the general case, however, the algebraical solution of the equations (i.), (ii.), (iii.)
is impracticable, since the elimination of » and w leads to an equation of the fourth
degree in u; nor does it seem possible to evade the difficulty by choosing a different
combination of integrals, since it may be shown that the necessary conditions cannot
be satisfied unless two at least of the combinations chosen are of the second degree
]n u, v, w.

32. Mr. CavLey has given* a solution of thls problem, which, though differing
totally in form and method from the above, resembles it in arriving exactly at a cor-
responding point. For in Mr. CavLEY’s equations (27.), (28.), ® and v are to be
expressed as functions of »; but this requires the algebraical solution of the system
(18.) for p, g, r, and is therefore impracticable. (The two equations (i.), (ii.) of the

* Cambridge and Dublin Mathematical Journal, vol. i. p. 167.
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last article are merely transformations of the two first of Mr. CavLey’s (18.) ; and (iii.),
though not identical with the third, is of the same degree; so that the algebraical
difficulty is precisely the same in both methods.)

33. If we suppose A=DB, the algebraical difficulty disappears, and the solution of
the problem can be explicitly completed. But on account of the importance and
interest of this case I shall make it the subject of a separate section, in which it will
also be shown that the solution of the general case may be made to depend upon it,
by means of the variation of elements. (See Section III.)

34. Suppose any complete normal solution of the system of differential equations (I.),
art. 14, be known, i. e. a solution involving the 2n elements

a,a, ...a, b,by,..b,

which satisfy the conditions (23.), art. 9; then an infinite number of other sets of
normal elements can always be found.
For if we determine the 2 quantities ,, ... ,,3,, ... 3,, as functions of a,, &ec., b,, &c.
by the 2n equations
dA dA
’d‘a';=bi’ ZIZ=Bi’
where A is any arbitrary function of

Ayy Aoy oo Ay )y Cgy oo Oy

it is obvious that the whole of the reasoning by which the formula (19.), art. 7, were
established may be repeated, merely putting A in place of X, and «, 3 instead of z, y.
And repeating in like manner the reasoning of art. 9, mutatis mutandis, it will follow
that if f, g represent any two of the 2= quantities «,, &c., 8, &c., the expression

d(f, 9)
2'- d(bi, a,~)

will be equal to unity if £, g be a pair of the form a;, 3;, and will vanish in every other
case. But it was also shown ((25.) art. 9) that the above expression is equivalent to
— [/, 9] it follows then that

Lo Bil=—1, [ ¢]=[a B]=[B: B,]=0%;
or, in other words, that «,, ... «,, B,, ... 3,, are a new set of normal elements.

This method however can hardly be of much use in practice, because we cannot
(at least without the solution of partial differential equations) determine what form

** I shall have occasion to refer afterwards to M. Dessoves’ Memoir in LIOUVILLE’S Journal, vol. xiii.,
*“ Démonstration de deux théorémes de M. Jacosr.” But it may be observed here that the proposition in the
text is not the same as that expressed by the same notation in the memoir alluded to, p. 400. For M. Dgs-
BOVEs uses the symbols [a;, &] in a different sense. His theorem, in the notation of the present paper, is
d(a,-, b,)
£, 9)

according as f, g are of the form a;, B; or not, which is easily established without the help of relations analogous

2

=1, or =0,
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of the function A will cause any of the new elements to be given functions of the old.
But the problems most likely to occur may be solved in another way, as follows.

35. Assuming for the set ), «,, ... @,, given functions of the set a,, a,, ... a, only,
it is required to find 3,, ... B,.

(It will be observed that the conditions [a; ;]=0 are necessarlly satisfied in this
case by virtue of (25.), art. 9, since a,, &c. do not involve b,, &c.)
~ Itis plain, that if the principal function X had been found from the = integrals
a,, a,, ... a, (as in art. 14.), it would be changed into that which would be found from
the n integrals «,, @, ... «,, merely by introducing the expressions for a,, ... a, in
terms of @y, ... «,; which expressions would be found by algebraical inversion of the
assumed equations which give the latter set as functions of the former. Let X repre-
sent the function X thus transformed ; we have then

X da,
= T = da, day g @ T

=b,gi+bgd7:+...+bq;'—:‘. N -

Thus @, is determined as a function of the old elements, since Z%‘, &c. may be ex-

pressed in terms of the latter. In like manner we should have a set of inverse equa-

tions
det,,

d d. .
b,.=3,.£_:+3,£+...+@n%, C e e e e e (89)
which may be used instead of (38.).
It is apparent that 3,, &c. will involve in general the elements e,, &c. as well as

b, &ec.
Conversely, if we assumed for 8,, &c. given functions of the set b,, ... b, alone, we

to (19.), but would not answer our present purpose. I regret to use symbols with a meaning different from
that which custom has to some extent sanctioned; but there seemed to be only a choice of difficulties.
Mr. Sporriswoonk has suggested to me the employment of the symbols (analogous to Mr. SYLvEsTER'S

Uy Uy Wy ouve z A
d d d ; R AR
——y ==y Ty s e dp dg, dg R |

«umbral” notation)

instead of those which I have used, namely,

d(u, v, w, ...)

d(z,y, 2, ...)’ (@, 9, 2, ...0).

If these were adopted, the two forms (p, g), [p, ¢] might be used without confusion in their usual significations.
See note to art. 9. But although the *umbral” forms are more suggestive of the properties which belong to
the above expressions as determinants, the other forms bring more into view the analogies which connect them
with the differential calculus ; and therefore, for the purposes of . this paper, I have preferred them. And it is
perhaps better, for the present, that different notations should be #ried, than that any attempt should be made
to fix upon a definitive system for subjects so recent as those connected with the theory of determinants.
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should have, for determining «,, &c., either of the systems
db; dB;
=3 (o), a=s(af) . ... G0)

We might obtain in this way an indefinite variety of sets of elements for the case
‘of elliptic motion, beginring with those given at the end of art. 30. But it will be
better to defer this illustration till after the discussion of the Method of the Variation
of Elements, which will form the subject of a future Section.

36. It results, from the investigations of this and the preceding Sections, that if a

(rn—1)

. . . . n
set of » integrals a,, a,, ... a, be given, satisfying the )

the determination of » more integrals b, ... b,, constituting, with the given ones, a
complete normal set, is a deferminate problem, admitting of a unique solution, and
always reducible (setting aside algebraical difficulties) to quadratures.

But if, out of a complete normal set, n be given of which one or more pairs are
conjugate, then the completion of the set is no longer a determinate problem, since
the remaining n integrals, containing also one or more conjugate pairs, admit, to
some extent, of arbitrary transpositions and combinations, as is evident from con-
siderations similar to those employed in arts. 13 and 35. Hence we should expect
a priori that the problem would require the solution of partial differential equations.

It appears, indeed, at first sight, that having any » of the elements giver functions
of the variables, the relations established in art. 9, with the others included in the
formula (21.), art. 9, would furnish more than a sufficient number of equations to
determine explicitly all the partial differential coeflicients of the remaining elements
in terms of the variables*, at least in the case in which the principle of vis viva sub-
sists, and the given integrals do not contain ¢. But it is certain from the above con-
siderations that this cannot be the case, and therefore that the equations furnished by
those conditions cannot be all independent. I have not at present attempted to show
this directly, though it would probably be easy to do so.

conditions [a;, a;]=0,

Note on art. 2, Section 1.

The theorem established in this article may be more shortly demonstrated as fol-
lows :—

Since d 25('”.‘.%) = 2{('1'1“{.%) + Ef(yidﬂ?s)

* The conditions [a;, b]=1, [a; b]=0, [b, b]=0, [a; a;]=0 will give, as is easily seen, 'f_("_'2'"_l_)+nz

equations; and the analogous conditions (21.), art. 9, in which the summation refers to the numerafors of the
differential coefficients, will give the same number, so that upon the whole we shall apparently have 3n2—n
equations, to determine the 2x? partial coefficients required.

It is not difficult to make mistakes in this subject. I was for some time under the impression that the pro-
blem could be solved when any n independent integrals were given. Even the illustrious Jacosr himself
appears to have been misled, at first sight, as to the consequences of Porsson’s theorem (art. 22.). See the
beginning of M. BErTrAND’s Memoir mentioned above; I do not know the fact from any other source.
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and 2(ydre,)=dX (by (5.)),

we have 2(xdy,) =d(—X+Z(2,9.)),

an equation which must become identical when 2,, ,, &c. on each side are expressed
in terms of y,, y,, &c. But the vight side being then a complete differential of a

. . . . dz; da;
function of y,, y,, &c., the left side must be so also ; hence the conditions %i=@ﬁi must
. : J

subsist. The investigation of art. 2 shows that they do subsist, and is therefore
perhaps to be preferred.

Section II1.—On the Equations of Rotatory Motion.

37. I this supplementary section I propose further to exemplify the precedmg
theory by exhibiting the application of it to the problem of rotation in a more detailed
form than was consistent with the plan of the former part of this essay. For this
purpose it will first be desirable to anticipate the subject of a future section, so far as
to give a concise deduction of the method of the variation of elements in its simplest
form.

38. Variation of Elements.—Suppose a complete normal solution of the system of

differential equations
i dZ vy A2

m‘-:@;’ _y,-l-%i:O N ¢
has been obtained, so that we have 2» elements, divided into two conjugate sets
@yy Qgy oou Q3 byy by il b,
as in the former articles, so that
(@, b:]=1, [asa]= (s bi] =[a, b;]=0.
It is required to express the solution of the system

__dZ , dQ dZ , dQ ,
xi:@i_k;i%’ + —I'“'—— ---0 . . . . . 6 o (I.a)
in the same form by means of variable elements. The disturbing function Q may be
a function of all the variables x,, &c., y,, &c., and may also contain ¢ explicitly.
In the undisturbed problem we have a;=0, b’i= ; 1. e. the equations

dal+|-_z a]_O’ dt+[Z b]__o e e (e)

(see art. 22.) subsist identically when z,, &c., y,, &c. are expressed in terms of the

elements and .
In the disturbed problem, «,, &c., y,, &c. are to be the same functions of the
elements and # as before; hence the equations (e.) continue to subsist identically, and

therefore the values of a;, b;, namely,

! d -
ai=7;7i+ [Z, a]+[Q, a]

db;
="CE'+ [Za bz] + [Q: bi],

MDCCCLIV. P
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become simply a=[Q, a], b=[Q, b,].
In these expressions Q, a,, b; are supposed to be expressed in terms of the variables.
Now

4, @)
(2, a]=%5, 2y

but, by equation (26.), art. 10, this is equivalent to

d(Q, a;)
— %20 )

in which ( is expressed as a function of the elements and #; and this last expression

obviously reduces itself to the single term —-% In like manner the expression for

[, b] reduces itself to +%; thus the equations for determining the variation of
‘the elements are
a9 p_do

ai=—a—b;) ——L-i-“l-i-, . . . .

(E.)
in which €2 is to be expressed as a function of the elements and #*. This will be a
sufficient account of the method for our immediate purpose.

39. The following propositions in spherical trigonometry will be required. If a, b,
¢ be the sides, and «, 8, ¥ the opposite angles of any spherical triangle, then

v, 2 '
M_l—cosucosﬁ

. l—cosy
cos (a+b)= TPy (40.)
(%(f::/—)-+ 1— cosacosf
cos (a—b)= SIPTTY: 5. o ... (41)

and if the sides be considered as functions of the angles, then

da
B cos 7dﬁ+ cosﬁdﬁ e e e e e e (42)
i‘; cosvyd + cos@d Ce e e e e e (48)

The two last are easily verified ; but as the others are not so obvious, I shall give the
demonstration. Putting x for the expression on the right of the equation (40.), we

* The history of these remarkable formula may, I believe, be stated as follows. They were first discovered
by LacraneE in the case in which a;, b; were the initial values of #;, y;, and Q contained #,, &c. but not y,, &c.
They were extended by Sir W. R. Hamirron to the case in which Q contains both sets of variables; and
finally, by Jacosr, to the case in which a,, &c., b,, &c. are any system of conjugate elements. Jacosr how-
ever does not appear to have published a demonstration of them, and the only one which I have seen is by
M. Dessoves, LrouviLLe’s Journal, vol. xiii. p. 897, and differs essentially from that given in the text.
Sir W. R. Hamiuron has pointed out the circumstance, that when & contains both sets of variables, the vary-
ing elements determined by the formula (E.) are not osculating.
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easily obtain

kﬁ_cosﬂa_;_ﬁ Singg— cosga_f-;_.ﬁ
l+$—00$2€‘%f'cose°_‘_';_ﬁ_ sineg
T
_cosgu_;ﬁ.cos“_g’*'?’cosﬁ+g-u
cos2 2P
= B =

whence it is plain that 2= cos (¢+5), and in like manner may the equation (41.) be
established.

40. Returning now to the problem of rotation, and supposing, for convenience,
that the question refers to the motion of the earth about its centre of gravity, the
following will be the signification of the symbols employed.

A, B, C are the moments of inertia. about the principal axes of the earth, viz. the
axes of x,y, 3; the last being the polar axis, and the arrangement being such that
the positive direction of 2 is to the north pole, and that the positive axis of 2 follows
that of y in the actual rotation about the polar axis: p, g, r being the angular velo-
cities about the three principal axes, the usual convention will be adopted as to their
signs ; so that in the actual case r is positive. The arrangement of the fixed axes of
¢, 7, { is supposed similar to that of x, y, 2, the plane of &,  being a fixed ecliptic, and
the axis of £ the origin of longitudes unless another origin be expressly indicated.

Then ¢ is the oliquity, +} the longitude of the vernal equinox, and ¢ the right
ascension of the axis of x; all referring to the fixed ecliptic.

Let the “principal plane” signify that which, in the undisturbed problem, is the
“invariable plane.” Then i is the inclination of the principal plane to the fixed
ecliptic, and j is the inclination of the equator to the principal plane.

In the case of the earth, A is nearly equal to B, 4 never differs sensibly from ¢, and
7 is therefore always small. But these conditions are not supposed in what follows.
It is assumed however that C is the greatest of the three moments of inertia. These
conventions, in which it is very desirable to avoid any ambiguity, may be illustrated
by the annexed figure, in which O represents the origin of longitudes.

The angles of the spherical triangle formed by the intersection of the three planes
with a spherical surface are ¢, j, ¥—¢; and the sides opposite to them will be denoted
by I,J, 6. Thus we shall have

71— COS 7 COS oS j— €08 cos
cos 087 cos § cos J =08/

cos = s —
sin sin § sinzsin

cos = cosi cos j— sinisinj cos ©.
P2
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And, in the figure, OY=1, and ¢ is measured from Y in the direction indicated by

the arrow, which is also the direction of the rotation about the polar axis. Moreover,
if the direction-cosines of the axes of z, y, x referred to the fixed axes, be respectively

a,b,c; a,b,c; a0l ", we shall have
@ = Co0S +J cos @— sin +} sin ¢ cos ¢
a' = — cos + sin ¢— sin J cos ¢ cos ¢
a"=— sin ) sin 0
b = sin+ cos ¢+ cos  sin ¢ cos ¢
b = — sin 4 sin ¢+~ cos +) cos ¢ cos ¢
b"== cossind
¢ =-singsind
¢ =— cospsind
"= cosd
=0 cos p— +J'sin @ sin 4
g=4¢sin p—-)/ cos ¢sin 4

r=¢ 4/ cosd,
hence we obtain the expressions for u, v, w employed in art. 31, viz.
u:‘j-?,: —Ap cosp+Bgsin g
—dh_
v= dT:'—CT

w= (%—,: — Ap sin ¢ sin 4—Bg cos ¢ sin ¢4-Cr cos ¢,
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from which the following also are easily deduced :
A+B(J +—5 (0’ cos 2p-+}' sin 4 sin 29)
v=C(¢'+/ cos )
wz-;é—;;?m,b’ sin”44-C cos 4 (¢'4+/ cos 8) +A-2_

41, Resuming the three integrals (i.), (ii.), (iii.) of art. 31, we may put the first in
the following form :—

Z+Q=h, . . . . R B
inwhich  2Z=3( -}ﬁ{;) (w+ . “‘;f,f;gw)g) +5

171 1 (v cos § —w)? Qu(vcos f—w) .
29=§<—A—]—3>{<u2-————sm—))cos2¢ (Sme )s1n2¢>};

and the other two are, as before,

B gino (¢ sin 29—+ sin 0 cos 2¢).

w2+u2+(—v:£.m——s—e)—%=k2 R (1
W=, + .+ « « o .« .« . . . . (i)
in which % is the sum of areas on the invariable plane, and g the sum on fixed ecliptic ;
moreover v=Cr is the sum of areas projected on the plane of the equator; hence
we have
g=kcosi, v=kcosj.
It has been seen that the complete solution of the problem is impracticable in the
general case, on account of an algebraical difficulty. If however we suppose B=A,
this difficulty disappears; and after completing the solution on this supposition we
may take account of the terms arising from the inequality of A and B, by treating
the function denoted above by Q (equation (i.)) as a disturbing function, and apply-
ing the method explained in art. 38. Thus when the action of disturbing forces is
considered, the whole disturbing function will consist of two parts; one depending
upon the forces, and the other the function which has just been assigned, and of
which the effect, as will be seen, is extremely simple.
42. We proceed then first to complete the solution on the supposition A=B. The
three integrals (i.), (ii.), (iii.) give in this case

D2=0_C_A(If2—2Ah), W=Z . « + ¢« ¢ « o & + « o (44.)

y= {lﬁ-—v —w? 420w cos §—k? cos? 9}

sin §

in which latter expression the above constant values of v and w are to be intreduced,.
We may put, as before, g=Fk cos i, v=Fk cosy, j being now constant ; and the expres-
sion for » becomes

& ) s ) . I
u_gm—{l-—cos z—-008J+2coszCOSJcosé—cps9}. . . (45)
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and we shall have (art. 19.)

- V=k({cositpcosj)f\udd; . . . . . . . . . . . (46)
and we will take
h, cosi, cosj
for normal elements*, so that k is to be considered as a function of these elements,
given by the equation (see (44.))

o 2AChH
F=gCoAje 0 ¢ - 0 -+ (T)

It is to be observed, that, according to the hypotheses admitted above, % is positive ;
also, the expression for » at the end of art. 40 becomes, in the case now considered,
u=Ad. Thus u has the same sign as ¢ ; and since ¢ is evidently comprised between
i—j and i+, if we suppose ¢ and j both acute (as in the figure), sind is always posi-
tive; hence in the expression (45.) for », we have to attribute the sign 4+ or — to
the radical, according as @ is increasing or diminishing, or according as © is between
o and 7, or not; thus, in the position represented in the figure, the negative sign
must be taken.

43. If we put +Q for the radical in question, the expression for udd is easily trans-
formed into the following, namely,

udf=-+

k sin 1 1 (cosj— cosd)® 1 (cosj+ cosi)?
Q T2 1—cos§ 2 1+4cosh [’

in which it is evident that the part within brackets is posi¢ive upon the whole, but
each of the two last terms is essentially negative. The integration is now easily per-
formed, and the result is

yw=iw,

where the sign is that which belongs to the radical Q, and P is given by the equation

cos §— cos i cosj
sinésiny

Pz= cos™!

(cosj— cos 7)?
1—cosf
sinésiny

—1+ cosicosy

1 . .
—5(cosj— cos i) cos™

(cosj+ cosé)® . .
1+ cosd 1—coszicosy

sin¢sing

+%(cosj+ cos i) cos™

2

+ an arbitrary function of 4, 7, A.
This apparently complicated expression has a very simple geometrical signification ;

* Since g, %, k are normal elements (i. e. satisfy the conditions [g, 4)=0, [%, k]=0, [k, g]=0, art. 81.), any
three independent combinations of them are obviously normal also.
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for, referring to the figure, and using the theorems (40.), we see that it is equivalent to

P= cos™'(— cos @)+ cos™'(cos(I+4J))

cos1+ cos i

cosj— cos &
2

cos™'(—cos (I—J))+K,

where K is put for the arbitrary function. Now the expression for udd (from which
this is derived) shows that the three terms in the above value of P must be so inter-
preted that the differential coefficient of the first (with respect to ¢) shall be positive,
and those of the two others negative. These conditions will be satisfied by taking *

_—|__P=1_®+COSJ+ cosz(I+J)

SO e (I~ T))+K

(in which the upper sign is to be taken when @ is between o and #, and the under
sign when © is > ). :

Hence, assuming the arbitrary K so as to destroy the constant part of the expres-
sion, we have, without ambiguity, for all values of the variables,

yudo_—_k((a—l cosj—J cosi),

so that, finally,
V=k{(4+=1)cosj+(p—J)cosi4+®}. . . . . . . (48)
It will be observed that without attention to the proper interpretation of ambiguous
symbols, a completely erroneous expression for V might have been obtained.
44. The final equations will be (art. 19.)

dv av av
k_t+7’ deosi % dcosj_B’

7, a, 3 being three new arbitrary constants, namely, the elements conjugate respect-
ively to &, cosi, cosj.

In performing the differentiations, it is to be remembered that I, J, ® do not con-
tain ~; and that, by the equations (42.), (43.), art. 39, the terms arising from the
differentiation of I, J, ® with respect to ¢ and j, disappear identically, so that these
functions may be considered as exempt from differentiation. Also we have

di
a_k o _o

dk___ (C—A)kcosj
deosj ™ 2ACh

* In the figure, as § diminishes (i and j remaining constant) © increases, I+ J increases, and I—J increases or

sin i J
diminishes according as j = i, since tan 1= a8 2 .
g 2 27 + ¢

sind—
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(see equation (47.)), and the final equations become, after simple reductions,

cosi+PBcosj , k a
0= —5———-—7;@———‘7-4— K(t-—}-er)

'S
o
o
o
-

p—I=E— (}i-- é)k cos . (t4-7) (R.)

=R

y—I=

These equations comprise a normal solution of the problem. The first gives imme-
diately

_)

. T R Cco8 ? €08
€os §= cos ¢ c0S j~ sin i sinj cos ( (t4+ )_?L,___i@__!)

(see art. 40.) ; and since I, J are given explicit functions of 4, the three variables
4, ¢,  are determined explicitly as functions of ¢, The third equation (R.) simply
expresses that the invariable plane intersects the ecliptic in a fixed line, whose longi-

. &
tude is -
45. Let us now introduce the supposition that A and B are unequal, and that the
body is acted on by disturbing forces.
1 . . .
We must (see art. 41.) put %(K-I——Il—;) instead of }& in the equations (R.) of the last

article ; these equations will express the solution of the problem, the elements being
now variable, and determined as functions of ¢t by the system of equations

__d® e . d®
W==—rs (cosi)'= -~> (cosj) = v
_dD  ,_ A® 4D

=W YT dcost g= ~dcos)

where @ is the disturbing function, expressed in terms of the elements and #.

46. If there are no disturbing forces, @ reduces itself simply to Q (art. 41.), which
is now to be transformed by means of the equations (R.), art. 44, as follows.

Since v=Fk cosj, and w=F cos i, we have

v cos f —w cos i— cosj cos f .
W__——]ﬂ Sm—e—-f-—‘—ksmjcos I.

Also the expression for w, art. 42, is easily put in the following form :

Bl ge e g . ML
u=~—18in’¢sin’j— -
o 9{ j—(cos d— cos i cosy)

—smg Sinising sin ©

(with respect to the sign, see art. 42.). And since
sin ® __sin 1
sinf  sini

this becomes u=—ksinjsin I,
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Introducing these expressions in the value of Q (art. 41.), we find

B1O1\ L,
Q= Z('A—]—3> §in°j cos 2(@—1) S 6 o e e e e e (49)
and when ¢—1 is expressed in terms of the elements and ¢ (see equations (R.), art. 44,

in which 5 <A+B) is now to be written for > this becomes, finally,

Q=— kQ(A ;,’)sm] cosd[ﬁ <1<%l—|—jl§>—-é)kcosj.(t+f)]. .. ()

47. The above expression for  does not contain the elements 7, «; hence, when
there are no disturbing forces, we shall have (cosi)'=0, «'=0, or ¢ and « are con-
stant ; also

dk dQ dk  dQ

K== & —dcos;j 16"

an expression which is easily found to vanish identically ( see the values of ‘é’; 7 "Z‘S]

in art. 44, observing to put ( A+B> for ) Thus £ is also constant ; and the * prin-

cipal plane” is still the “invariable plane,” as we know & priori.

48. If we now suppose the attraction of another body to beintroduced as a disturb-

ing force, we shall have to take for the disturbing function

OP=Q—-P,
where Q is the same as above, and Pis the potential of one body upon the other, ex-
pressed as a function of the elements and the time*. And it follows from the remarks
of the last article, that the variation in the position of the principal plane depends
wholly upon P, and not upon Q2. :

I shall here conclude this part of the subject, as it would be beyond the scope of
this essay to enter into the details of any of the various problems which might be
taken in illustration of the theory, such as those which relate to precession and nuta-
tion, or to the motion of the moon about its centre of gravity. The investigations of
this section have been introduced, hecause the results, so far as they go, appeared
interesting in themselves, and afforded a remarkable example of the application of
the general method.

P.S. Since the last sheets of this essay were in type, I have seen for the first time
two papers by Professor Brioscui, in TorroLiNr’'s Annali for August and October
1853, of which the titles are ¥ Sulla variazione delle costanti arbitrarie nei problemi
della Dinamica,” and “Intorno ad un teorema de Meccanica.” I have not had an
opportunity of examining them sufficiently to judge how far any of the preceding
investigations may have been anticipated in them.

June 7.

* The variables which determine the position of the disturbing body are supposed to be given explicit func-
tions of ¢.
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